

© vFunction Inc. 2020 www.vFunction.com

vFunction User Guide

Introduction

vFunction is a cloud-native modernization platform that combines dynamic and static code analysis,
machine learning, and automation to automatically identify and extract services from existing
applications. vFunction is the only platform purpose-built for modernization of Java applications.

The vFunction modernization process starts by learning the running monolithic application, and
surfacing the interdependencies within it. Using AI, the platform analyzes and identifies services that can
be separated from the application. This decomposition can present a range of micro, mini, or even macro
services, depending on your application environment, each being an independently deployable and
scalable application component.

vFunction automates the extraction of these services, enabling you to modernize your monolith, quickly
and easily.

© vFunction Inc. 2020 www.vFunction.com

The vFunction Platform
Review the following diagram to familiarize yourself with the various components of the vFunction
platform. The platform consists of 3 basic components; the server, the controller package, and a tools
package. The server runs on a Linux machine, with Docker installed. The controller package is installed on
the machine that runs the monolithic application which can be either a Linux or a Windows machine, and
the tools are run on a development machine, with access to the code of the monolithic application.

The controller package consists of three elements: the vFunction agent, that collects data during the
dynamic analysis phase; the vFunction Viper application, that performs static analysis on the binaries of
the application; and the vFunction controller that handles all the communication between the agent,
Viper, and the vFunction server.

The vFunction agent is a mix of a Java and native agent, and needs to run on the JVM that is currently
running your application. Refer to the vFunction Support Matrix document for a list of supported
application servers and JVMs.

https://drive.google.com/file/d/1ccq8LFab1FrYAimDUxwgjiCOdk4QuVzs/view?usp=sharing

© vFunction Inc. 2020 www.vFunction.com

Getting started
There are 4 main steps to take you from your monolith to extracted, independent services:

1 INSTALL ● Install the vFunction server
● Create your application in vFunction
● Install the vFunction controller package
● Add the vFunction agent to the JVM arguments

2 LEARN ● Start a new measurement
● Create a new measurement with a baseline
● Import a previous measurement

3 ANALYZE ● Pick a service
● Explore the service tree
● Analyze the service classes & infra classes
● Analyze the service variables
● Remove dependencies

4 CREATE ● Download the service specification file (i.e “service spec”)
● Run the service creation tool to create the service

© vFunction Inc. 2020 www.vFunction.com

Install
This section takes you through the installation and configuring vFunction.

Before you begin

● For download, make sure the server has HTTP/S access to the vfunction.jfrog.io domain.

● Have the password provided to you by vFunction handy.

Install the server

Install the server according to the instructions in the installation guide:

● Install using sudo - follow if you have access to root privileges on the server.

● Install using a local user - follow if you do not have sudo privileges on the server.

Create your application

1. Sign in to vFunction in your browser.

2. In the vFunction menu, click NEW APPLICATION, and give your application a name.

3. Click CONFIGURE PARAMETERS, and in the Classes to include box, enter the application's core

package prefixes, e.g. com.vfunction.

4. Click Create.

The controller installation guide appears.

5. Select LINUX or WINDOWS, depending on your OS, and follow the instructions to install the

controller.

https://portal.vfunction.com/file/eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1dWlkIjoiZDE4ODM3OGMtZjlkNS00NmI5LWIyZjktNmYwMDdiZTU5MGY5In0.ULzFkjsv4rKiXhXpqNt_TO52nfnhhq4I05gUpj8y5_Y/d188378c-f9d5-46b9-b2f9-6f007be590f9/Installation+Guide+-+vFunction+Server+-+%28July+2020%29.pdf
https://portal.vfunction.com/file/eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1dWlkIjoiYmMzMDFiODAtNWM1OC00OGIzLTg4OGUtMzk4ODcyNTY5MzA0In0.z696ro4cpOR_caeiEEwmRzE1fUXOa7Btv6XUjSzRwoA/bc301b80-5c58-48b3-888e-398872569304/Installation+Guide+-+vFunction+Server+-+Sudo+Less+%28July+2020%29.pdf

© vFunction Inc. 2020 www.vFunction.com

Install the controller and agent

Install the controller and agent according to the instructions in the installation guide relevant to the

OS your application is running on:

● Linux installation with root privileges

● Linux installation with no root privileges

● Windows Installation

Add the vFunction agent to the JVM arguments

The location of the JVM arguments depends on the environment your organization is using. This task

should be performed by the application server admin.

1. Add the agent to the JVM arguments of your application.

Follow the sample JVM arguments provided in the following location:

● LINUX: /etc/sysconfig/vfunction/agent/vmargs-examples/

● WINDOWS: C:\vfunction\agent\vmargs-examples

2. Restart your Java application and make sure the vFunction Agent is running in the arguments, and

that the application itself is running as expected.

3. To check that the agent is installed and running correctly, look for the following string in the

application log file:

vFunction native agent version {version number} successfully loaded

https://portal.vfunction.com/file/eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1dWlkIjoiY2U5M2NkODQtYmZmNi00NzJkLWJmZmItOTE5ZGM3ZDIzZmQxIn0.wXjhDmN4v4Zxd2K6oJt3YyZRqopubgEuezM-gmRIIrE/ce93cd84-bff6-472d-bffb-919dc7d23fd1/Installation+Guide+-+vFunction+Controller+%26+Agent+-+%28July+2020%29.pdf
https://portal.vfunction.com/file/eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1dWlkIjoiNGE3ODNjNjctMWI2Ny00M2FmLWI0YmUtYWE5YzhiNmE4ODZhIn0.5-5MkMjo68D3IIckRlSKyRYQUal0T_ZqjboogIim7w8/4a783c67-1b67-43af-b4be-aa9c8b6a886a/Installation+Guide+-+vFunction+Controller+%26+Agent+-+Sudo+less+%28July+2020%29.pdf
https://portal.vfunction.com/file/eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1dWlkIjoiZTg4YTBkYzgtMmVkYi00MjgxLTg1YzctNDZiM2ZmMzM1MDI4In0.NhgFiNTqMFG5-qg6lrd2GBJfUliUVibzWhvcwyoWIdk/e88a0dc8-2edb-4281-85c7-46b3ff335028/Installation+Guide+-+vFunction+Controller+%26+Agent+-+Windows+%28July+2020%29.pdf

© vFunction Inc. 2020 www.vFunction.com

Learn
You’re now ready to get vFunction to learn about your monolithic Java application. During the learning

phase, vFunction reviews your application and identifies all the elements that make up its services, and the

dependencies and connections between them.

The first time you use vFunction, you’ll create a new measurement. A measurement is an instance of

Learning. To allow the platform to learn your application, run tests that emulate normal use operations on

your application while running the measurement.

In case you need to stop the measurement, you can always go back to re-starting the same measurement, and

perform more tests to allow the platform to discover more information. The more tests are performed, and

the more information gathered, the platform will be able to provide a more detailed picture of all the

connections and dependencies in your monolith.

We recommend you create a new measurement whenever you’ve updated the code of your application, and

need to reassess connections and dependencies.

Create a new measurement

1. Sign in to vFunction, and choose the application you want to test.

2. Click NEW MEASUREMENT +.

3. Choose the application controller where you want to conduct the learning measurement.

4. Click START, and ask your QA team to run thorough tests that emulate normal application load for

the breadth of the monolithic application.

While learning runs, identified services and other scanned metrics, such as functions and classes,

start to appear in the vFunction console:

5. When you finish testing, or when no additional metrics are identified by vFunction, click
STOP.
The STOP button changes to STOPPING while the process finishes gathering all information in

the queue. The process is stopped completely when the START button appears.

© vFunction Inc. 2020 www.vFunction.com

Create a new measurement with a baseline

If you’ve made changes to your code, starting a new learning measurement enables you to understand the

impact of your changes.

However, while starting a new measurement, it is possible to base the measurement on an existing

“baseline”, which means that an analysis that was performed on an already existing measurement will be

taken into account when analyzing the new information from the new measurement.

After creating a new measurement, and before you click START, click SET BASELINE, and choose the

measurement to set as the baseline for your architectural settings.

Import a previously collected measurement

At any point, you can download a collected measurement, save it, and upload it later to create a new

measurement from its data.

To import a measurement click IMPORT, and upload a measurement zip file to use the measurements

collected in a previous learning phase.

© vFunction Inc. 2020 www.vFunction.com

Analyze
After the learning phase is complete, use vFunction to analyze the services and their dependencies in your

current monolithic application. During the analysis phase, review what vFunction learned about your

application, and use the information to begin to isolate application services.

Explore the call tree of each service to understand the boundaries of the service, and analyze the service

classes in order to understand interdependencies. You will find that you move between these two tasks in

order to know your service and plan its extraction.

Afterward, you will analyze the service variables and remove dependencies to build your target

architecture.

Exclusivity

Exclusivity is a key concept of the analysis phase. During the analysis phase, a class is considered exclusive

if it is used within a single service. Similarly, service exclusivity is defined as the percentage of classes that

are exclusive to it. This means that the higher the service exclusivity is for a given service, the more

functionality is extracted from the monolithic application once the service itself is extracted. More

specifically, every class that was exclusive to the extracted service is no longer needed throughout the

monolithic application and can be removed from there.

Your goal

During the analysis phase, your goal is to increase the exclusivity of each service as much as possible - this

is the key to defining good services. The higher the exclusivity, the better defined the service is, and once

extracted, the less functionality resides in the monolith.

© vFunction Inc. 2020 www.vFunction.com

What you can see in the Analysis tab

Access the ANALYSIS tab to review the services that were automatically identified by vFunction.

The tab is divided into 3 panes.

Left pane

The number of identified services and entry points (the functions/methods that call on the identified

services) are shown in the ANALYSIS OUTPUT list.

Click next to the Analysis output to open the analysis parameters. See Analysis Parameters for more

information.

© vFunction Inc. 2020 www.vFunction.com

Center pane

Each sphere presented on the center pane represents a service. A service is a group of classes and context

that can be potentially separated from the monolith to modernize the application:

● The sphere size represents the size of the service, measured in the number of runtime-identified

classes.

● The sphere color represents the exclusivity of the service, that is, the degree to which classes are

accessed exclusively from that service.

○ A red sphere shows a service with high exclusivity (61%-100%), often a good starting

point for extracting the service.

○ A blue sphere indicates the service has medium exclusivity (31%-60%).

○ A white sphere indicates that many of the service elements are dependent on other

services (low exclusivity, 0%-30%)

● The dotted lines between the spheres represent calls between services. The arrow represents the

call direction. A dotted line from the black sphere in the middle is a call from flows that were not

extracted from the monolithic application, or from existing end-points of the system.

● When selecting a service, solid lines between services may appear. These lines between the

spheres represent interdependencies between the services (i.e. non-exclusive variables) based on

the parameters filter chosen in the top-right pane - these need to be examined. For more

information, see Analyzing the service variables below.

© vFunction Inc. 2020 www.vFunction.com

Right pane

Details of the identified services are shown in the right pane:

● The list of services

● The number of entry points

● The number of dynamic and static classes and their exclusivity

● The number of variables and their exclusivity

● An estimate of the amount of time spent in that service during testing

The interdependencies filter

The interdependencies filter allows you to choose which interdependencies will be represented by the

solid lines between the services in the middle pane when a service is chosen.

© vFunction Inc. 2020 www.vFunction.com

Analyze a service

Use the 3 panes in the Analysis tab together to:

● Understand the number of potential services that can be extracted

● Understand the size and name (i.e. the functionality) of the potential services

● Understand the complexity of separating each service by evaluating its exclusivity

● Assess the amount of work needed to extract these services by understanding the number of

interdependencies across classes and variables

● Prioritize which services to separate first

Pick a service for modernizing

Choose one service at a time to analyze and modify. To access your chosen service, click the sphere in the

center pane, or click the service name in the right pane.

Explore the tree

1. Click EXPLORE TREE and begin to familiarize yourself with the service and its functions.

In this call-tree, you can see the classes or functions that make up the service. 3rd party classes

and classes that appear in a large number of services (“Infra classes”) appear in different colors to

allow you to focus on the core functionality of the service.

2. The entry-points of the service are methods that once invoked trigger the service. A call to an

entry point of a different service signifies a service-to-service call in the presented decomposition

of the application.

3. Once you have familiarized yourself with the services and after having reviewed the exclusivity of

the classes, the call tree allows you to explore where a class is accessed from. The call-tree then

allows you to define new entry-points to any service to better define the service boundaries, and

improve the exclusivity of the service.

4. From exploring the entry-points of a service, you also can merge a service entirely into another

service, create a new service from a single entry-point, move entry-points to a different or to

completely remove a single entry point, all to further optimize the service boundaries and

continue to increase the exclusivity of the services..

© vFunction Inc. 2020 www.vFunction.com

Analyze the service classes

A class can either be exclusive to a service, non-exclusive, meaning it appears in a small number of

services, or infrastructure ("infra") if it is a dependency for many services.

Infra classes can either be extracted with the service itself and duplicated between services, or packaged

in a library that you’ll subsequently make common to many services in an extracted "common-library".

Reviewing the list of classes in your monolith and understanding whether they should be exclusive, non-

exclusive, or infra is critical.

1. Click VIEW DYNAMIC to view classes that were identified in the learning process using dynamic

analysis.

2. Click VIEW STATIC to view the compile-time dependencies of the dynamic classes that were

found using static analysis.

3. The right pane is divided into tabs for classes that are exclusive (EXCL), non-exclusive (NON),

infrastructure elements (INFRA), and all (ALL).

4. Click EXPLORE to drill into each class to understand how the service can be isolated.

5. Change the class as appropriate.

For example, select a class and click MARK CLASS AS INFRA to change it to an infrastructure

element. This element will be “ignored” when isolating the service, and ultimately will be included

in a shared library used by multiple services.

On the other hand, if you find a class identified by vFunction as infra, but you think it should be

part of a particular service, mark the class exclusive or non-exclusive, as applicable.

6. In case the infra class is from a jar that all its classes can be classified as “infra”, select the class and

click MARK JAR AS INFRA. All classes from this jar will be removed from the analysis. To remove a

jar from the list of “infra jars” review the Analysis Configuration.

© vFunction Inc. 2020 www.vFunction.com

Analyze the service variables

In this step, you’ll review the service variables, and assess the amount of work needed to separate the

service by understanding the interdependencies with other services, and constraints to separating the

service.

Variables

Variables are defined as any object that may add a constraint to separating the system into services or can

hint to the domain of the service.

The platform tracks 7 types of variables:

● Files

When analyzing the variables, review the files accessed by the service, and determine whether

they can be made available to more than one service.

● Synchronization objects

Synchronization objects such as locks or atomic variables may be used to protect areas in the code

that run in multi-threaded environments. Review all non-exclusive sync objects to make sure the

multi-threaded aspects of the service are handled before extracting the service.

● Static variables

A static variable has a single copy in memory shared by all instances of the class. Review all non-

exclusive static-variable to make sure they do not constitute a “shared state” in the monolith.

● Database Transactions

A database transaction cannot be shared across service boundaries. Splitting out the service

naively may break these complex transactions. Review all the non-exclusive read-write database

transactions that were found in the service.

● Java Beans

Spring beans or EJBs are objects that may contain state, and may hint to certain application

domains. It is highly preferable to keep certain beans exclusive to one service, as it helps keep the

domain unique to the service.

● Network Sockets

Network sockets inform us of external resources that the application requires. If net sockets are

not exclusive, a developer will need to review them to make sure the service can be extracted.

© vFunction Inc. 2020 www.vFunction.com

● Database Tables

Access to database tables, similar to beans, hints to the application domain in which the service

operates. Similar to beans, it is highly preferable that table access (and especially read-write

access) is exclusive to a single service. When exclusive, it’s easier to split the data layer down the

road.

Reviewing the variables

1. Next to the variables in the service you are analyzing, click VIEW.

Filter the variables list based on the type of the variable or by it’s exclusivity (exclusive, non-

exclusive or infra).

2. Review the non-exclusive variables to understand how they are accessed from other services and

whether they pose a constraint to extracting the service.

Remove dependencies

As you go, isolate the service elements (entry points, non-exclusive classes, and variables) that should be

exclusive, and remove their dependencies.

For each element:

1. Click the element.

2. Click EXPLORE to see where else it is called from.

3. Decide which service logically should be calling the element.

4. Review the call tree from where the class is accessed.

5. Find the right method to set as an entry point to the chosen service.

Following these steps, the vFunction platform will perform the analysis based on the new configuration,

and the specific dependency will be removed from the service.

Once your target architecture is ready, you can extract the service.

© vFunction Inc. 2020 www.vFunction.com

Analysis configuration

Click next to the Analysis output in the left pane to access the Analysis Parameters screen.

The analysis parameters determine certain behaviors of the analysis and may affect the result of the

analysis considerably. However, any modification to the parameters can be reversed, and it will not

change any entry points that were previously defined by the user.

Understanding the analysis parameters:

Minimum Variable Merging Threshold & Minimum Class Merging Threshold

The analysis will merge services together if merging the two services will increase the overall variable or

class exclusivity of the system by this threshold amount. If the result of the analysis yields too many

services, try to reduce the thresholds to allow the platform to merge more services together. If the result

of the analysis seems to merge too many services together, increase the threshold in order to let the

analysis merge a service only in case the addition to the overall exclusivity is considerable.

© vFunction Inc. 2020 www.vFunction.com

Minimum Runtime & Maximum Runtime

In order to allow the user to focus on the important flows in the application, the analysis filters out classes

with very little or too much time spent in them. Decrease the minimum

runtime in case too few flows are captured by the analysis. Increase it if too many services are presented.

Decrease the maximum runtime if a service is found to encapsulate too many of the application flows,

increase it if it encapsulates too few flows.

Classes to ignore, Classes to include, & Infra jars

In order for the analysis to know how to construct the service specification, the user needs to let the

analysis know which of the application’s classes should be extracted with the service, which should be

provided as 3rd party dependencies, and which should be provided as 1st party dependencies, or as

application libraries. Add all the package prefixes in your application to the “Classes to include”, e.g.

com.vfunction., org.vfunction. and add all the packages in your application that you don’t want to include in

the service to the “Classes to ignore”. If there are jars that contain classes that match the “Classes to

include” but you would like that jar to be set as a dependency to the service, add that jar to the “Infra jars”

list.

Classes to split

In certain applications, the class of the entry-point may be too large and encapsulate too much

functionality to be extracted as-is. In this case, add the name of the class to the “Classes to split” in order

to tell the analysis to create a new class of the same name, with the minimal required functionality.

Generate a common library

If you want the analysis to create a library from all the “infra classes” that were found, mark this

configuration. Otherwise, if you want the infra classes to be extracted in each service, same as the non-

exclusive classes, leave this configuration unmarked.

© vFunction Inc. 2020 www.vFunction.com

Extract services

With the target architecture ready, you can start to decompose the application by business capabilities or

by application sub-domains.

Download service spec

1. Click on the service you want to extract.

2. Click Save , and then click DOWNLOAD SERVICE SPECIFICATION.

The system generates a specification file containing all the information required to automatically

create the service.

Run the service creation tool

Before you begin

Make sure you install the tools on a machine (Linux or Windows) that has access to the monolith’s code.

Download the vFunction tools

Download the vFunction tools from the following link: portal.vfunction.com

Unzip and extract the code-copy executable from either the Linux or Windows folder, depending on your

OS.

Run the service creation tool
Given the service spec file, the tool copies the provided source files according to their packaged structure.

It then adds the dependencies and test files and generates the required configuration files.

Note: Re-running the tool will cause it to add additional sources without overriding existing work.

https://portal.vfunction.com/file/eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1dWlkIjoiZDg4ODc4N2UtYzFlMS00ZTg1LWEwM2MtOWYwZTQzN2FlYTNlIn0.kbjWcUubdMhDMFkIj2bciBiQzc0LRoIYc2uYBmc04t0/d888787e-c1e1-4e85-a03c-9f0e437aea3e/vfunction-tools.tgz

© vFunction Inc. 2020 www.vFunction.com

The following parameters are required to run the code-copy tool:

● spec: The path to the service spec file

● source: The path to a directory containing the source code of the monolithic application

● dest: The path to the destination folder where the new service will be created

● repotype: The type of dependency management repository used by the original project. If you do

not have one, you must select LOCAL.

Note: Run ‘code-copy --help’ to see more details on the possible parameters to running the tool.

Example:

./code-copy --spec /home/user/MyService.json --source

/home/user/application/ --dest /home/user/new/myService --group

com.myorg

Once the code-copy tool is done, the service can be compiled, tested, containerized & deployed.

© vFunction Inc. 2020 www.vFunction.com

Glossary

Common terms we use:
LEARNING

The phase in which the vFunction agent collects

data while the application is being tested in pre-

production.

ANALYSIS

The phase in which the data collected from the

learning phase is analyzed to identify services,

variables, functions, classes, and their

interdependencies.

SERVICES (I.e. Proposed Services)

A group of classes, methods, and variables that

represent a potential service.

CALL TREE (A.K.A CALL GRAPH)

A control flow graph that represents calling

relationships between functions within a service.

ENTRY POINTS

A method at the root of the service’s call tree.

EXCLUSIVITY

The % of variables used within the service that

are accessed exclusively from within that service.

EXTRACTED RUNTIME

The % of CPU time spent in functions that are

called from within the services. The remaining

time is spent in functions that

were not assigned to any service.

CLASS EXCLUSIVITY

The % of classes found during learning or during

static analysis that are used exclusively from within

a single service.

EXCLUSIVE CLASSES

These classes are used exclusively from a single

service.

NON-EXCLUSIVE CLASSES

These classes are users from several services.

VARIABLES

Objects that potentially pose constraints to

extracting a service, or hint to a certain domain of a

service (e.g. locks, database transactions, Java

Beans, etc.)

VARIABLE EXCLUSIVITY

The % of variables found during learning that are

accessed exclusively from within a single service.

EXCLUSIVE VARIABLES

These variables are accessed exclusively from a

single service.

NON-EXCLUSIVE VARIABLES

These variables are accessed from several services.

